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Abstract: A conservative downscaling technique was applied when comparing nitrogen
dioxide (NO2) column densities from space-borne observations and a fine-scale regional model.
The conservative downscaling was designed to enhance the spatial resolution of satellite
measurements by applying the fine-scale spatial structure from the model, with strict mass
conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column
densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and
the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with
the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96
for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2

concentrations by combining satellite column densities and simulated surface-to-column ratios from
the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS)
surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for
both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a
useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for
air quality and emissions studies. The reconstructed fine-scale surface concentration field could be
used for future epidemiology and urbanization studies.
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1. Introduction

The continuous monitoring of tropospheric nitrogen dioxide (NO2) is of great importance
because it is one of the major pollutants that affects both humans and the biosphere directly and
indirectly [1,2], and it plays an important role in tropospheric chemistry. Tropospheric NO2 is one
of six pollutants regulated by the US Environmental Protection Agency’s (EPA) National Ambient
Air Quality Standards, with the criteria set at 100 ppb for 1 h and 53 ppb for the annual average,
according to the Clean Air Act (https://www.epa.gov/criteria-air-pollutants/naaqs-table). NO2 is
also a primary precursor for ozone formation, in association with nitrogen oxides (NOx = NO + NO2)
and volatile organic compounds (e.g., [3,4]) and serves as an absorber of solar radiation, which affects
the radiation budget [5]. Further, NO2 is also an important indicator for traffic and urbanization [6–8],
as estimated via NOx emissions.

Remote Sens. 2018, 10, 1001; doi:10.3390/rs10071001 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3968-6145
https://orcid.org/0000-0002-7781-2029
http://www.mdpi.com/2072-4292/10/7/1001?type=check_update&version=1
https://www.epa.gov/criteria-air-pollutants/naaqs-table
http://dx.doi.org/10.3390/rs10071001
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1001 2 of 17

Since the launch of the Global Ozone Monitoring Experiment (GOME) in 1995 [9], NO2 column
density measurements from satellites have proven to be effective at complementing sparse surface
NO2 monitoring sites in order to provide global coverage. Four instruments have been used to
monitor tropospheric NO2 column densities from satellites, with varying resolution and overpass
time. The GOME (1996–2003, onboard the European Remote Sensing-2), Scanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY (SCIAMACHY) (2002–2012, onboard ENVISAT), Ozone
Monitoring Instrument (OMI) (2004-present, onboard Aura), and GOME-2 (2007-present, onboard
MetOp-A and MetOp-B) have all been used for the detection of NOx emission sources, the analysis of
multi-year trends, and the evaluation of emission inventories [10–20].

While NOx emissions come from both natural and anthropogenic sources, the dominant portion is
anthropogenic, mostly from road vehicles and point sources such as energy and industrial productions,
where high temperature combustions are required. The NO2 plumes from urban anthropogenic
sources usually have a high spatial gradient, which cannot be easily detected with currently operating
satellite observations. Kim et al. [21] demonstrated that this geometric resolution issue itself can cause
a systematic bias of more than 100% at urban locations, in addition to existing uncertainties from
stratosphere-troposphere separation, air mass factors, priori NO2 model (e.g., vertical profile and/or
model surface type resolution), upper tropospheric NO2 (e.g., lightning NOx), and diurnal variation in
NO2 column densities [22–25].

The spatial inhomogeneity of urban NO2 plumes becomes a practical problem as the focus of satellite
data analysis moves from global distribution to regional- or local-scale urban plumes. The need for
fine-scale modeling, smaller than the scale of satellite footprint pixels, is required now. The goal of
this study is to compare two satellite-retrieved products of varying spatial resolutions with modeling
results. We adopt the conservative downscaling technique developed by Kim et al. [21] to compare
OMI (13 × 24 km nadir footprint resolution) and GOME-2 (with 40 × 80 km) NO2 column densities
with Community Multiscale Air Quality (CMAQ)-simulated NO2 column densities in 4 km by 4 km
grid spacing.

The remainder of the paper is organized as follows. In Section 2 we provide basic information on
NO2 column data from OMI and GOME-2 and describe the CMAQ simulation configuration and its
emission inputs. Section 3 presents the two spatial regridding methods used, namely, “conservative
regridding” and “conservative downscaling.” Section 4 elaborates on the results, discusses the
differences between the two satellite NO2 column observations, and compares them with modeled NO2

column densities. A reconstruction of the surface NO2 concentration field based on the downscaled
NO2 column densities, along with a comparison of the surface observations, will be demonstrated in
Section 5. Finally, Section 6 concludes the paper.

2. Data and Model

2.1. Study Domain

Southern California, which includes highly populated urban (e.g., Los Angeles) and suburban-
to rural- areas, was selected as the study domain. Figure 1 shows the geographical coverage of the
study, focusing on greater Los Angeles, its neighboring cities (e.g., San Diego, Riverside, Bakersfield,
Santa Barbara, and Mexicali), the surrounding mountains, and the ocean off the coast of the basin.
The domain spans 652 km and 460 km in the east–west and north–south directions, respectively.
Colored circles represent the annual mean surface of NO2 concentrations in 2008 from the EPA’s
Air Quality System (AQS) surface monitoring sites, showing high NO2 concentrations near urban
cores. The background is the blue marble image from NASA’s worldview website (https://worldview.
earthdata.nasa.gov/).

https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/


Remote Sens. 2018, 10, 1001 3 of 17

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 17 

 

 

Figure 1. Geographical coverage of study domain over southern California. Circles represent annual 

mean surface NO2 concentrations from the EPA’s AQS surface monitoring sites. 

2.2. Model Descriptions 

The Weather Research and Forecasting model (WRF) [26] version 3.4.1 was employed to provide 

meteorological fields to CMAQ. The WRF simulations were conducted with three nested domains, 

of which the grid resolutions were 36, 12, and 4 km. The model employed 30 layers vertically, with 

the lowest computational layer being approximately 18 m above ground level and the top at 50 hPa. 

The initial guess field and lateral boundary values for the outermost domain were compiled from the 

North American Model (NAM) [27]. Four-dimensional data assimilation was conducted using 

vertical soundings and surface measurements. The Yonsei University (YSU) planetary boundary 

layer scheme [28], WRF Single-Moment (WSM) 3-class simple ice scheme [29], rapid radiation transfer 

model longwave [30], Dudhia shortwave radiation [31], and Kain-Fritsch cumulus parameterization 

[32] were chosen for simulations after carefully considering various available options of the WRF [33]. 

CMAQ was configured with the SAPRC99 mechanism [34], Euler Backward Iterative chemical 

solver, Aero5 aerosol module, Piecewise Parabolic Method advection scheme in both the horizontal 

and the vertical directions, multi-scale horizontal diffusion, and Asymmetric Convective Model 

version-2 vertical diffusion scheme [35]. A CMAQ-ready emissions inventory was developed using 

various numerical tools. On-road and off-road mobile sources were estimated using the Emission 

Factors model (EMFAC) 2011 and the off-road model from the California Air Resources Board, 

respectively. Biogenic emissions were calculated using the Model of Emissions of Gases and Aerosols 

from Nature (MEGAN). The above aggregated emissions were then allocated to spatial and temporal 

grids using the Emissions Processing System (EPS). Details of the emission process are available in 

SCAQMD [33]. 

2.3. GOME-2 and OMI NO2 Column Densities 

GOME-2 and OMI tropospheric NO2 column density data for 2008, retrieved by the Royal 

Netherlands Meteorological Institute (KNMI), are used in this study. The GOME-2 sensor, onboard 

the EUMETSAT MetOp-A satellite, takes nadir measurements at approximately 09:30 am local time 

with footprints of 40 × 80 km2 at the nadir. By contrast, OMI, onboard NASA’s Earth Observing 

Figure 1. Geographical coverage of study domain over southern California. Circles represent annual
mean surface NO2 concentrations from the EPA’s AQS surface monitoring sites.

2.2. Model Descriptions

The Weather Research and Forecasting model (WRF) [26] version 3.4.1 was employed to provide
meteorological fields to CMAQ. The WRF simulations were conducted with three nested domains,
of which the grid resolutions were 36, 12, and 4 km. The model employed 30 layers vertically, with
the lowest computational layer being approximately 18 m above ground level and the top at 50 hPa.
The initial guess field and lateral boundary values for the outermost domain were compiled from
the North American Model (NAM) [27]. Four-dimensional data assimilation was conducted using
vertical soundings and surface measurements. The Yonsei University (YSU) planetary boundary layer
scheme [28], WRF Single-Moment (WSM) 3-class simple ice scheme [29], rapid radiation transfer model
longwave [30], Dudhia shortwave radiation [31], and Kain-Fritsch cumulus parameterization [32] were
chosen for simulations after carefully considering various available options of the WRF [33].

CMAQ was configured with the SAPRC99 mechanism [34], Euler Backward Iterative chemical
solver, Aero5 aerosol module, Piecewise Parabolic Method advection scheme in both the horizontal and
the vertical directions, multi-scale horizontal diffusion, and Asymmetric Convective Model version-2
vertical diffusion scheme [35]. A CMAQ-ready emissions inventory was developed using various
numerical tools. On-road and off-road mobile sources were estimated using the Emission Factors
model (EMFAC) 2011 and the off-road model from the California Air Resources Board, respectively.
Biogenic emissions were calculated using the Model of Emissions of Gases and Aerosols from Nature
(MEGAN). The above aggregated emissions were then allocated to spatial and temporal grids using
the Emissions Processing System (EPS). Details of the emission process are available in SCAQMD [33].

2.3. GOME-2 and OMI NO2 Column Densities

GOME-2 and OMI tropospheric NO2 column density data for 2008, retrieved by the Royal
Netherlands Meteorological Institute (KNMI), are used in this study. The GOME-2 sensor, onboard the
EUMETSAT MetOp-A satellite, takes nadir measurements at approximately 09:30 a.m. local time with
footprints of 40 × 80 km2 at the nadir. By contrast, OMI, onboard NASA’s Earth Observing System
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Aura satellite, has a local overpass time of 13:30 p.m. with a 13 × 24 km2 footprint pixel resolution.
Data are downloaded from the European Space Agency’s (ESA) Tropospheric Emission Monitoring
Internet Service (TEMIS; http://www.temis.nl/airpollution/no2.html). TM4NO2A version 2.3 data
are used for GOME-2, and DOMINO version 2.0 data are used for OMI. The Differential Optical
Absorption Spectroscopy (DOAS) technique was used for both products. Details on the NO2 column
retrieval algorithms and error analysis are described in Boersma et al. [17,36]. The quality of the data
is assured by discarding pixels with high cloud fraction (>40%) and contaminated by row anomaly
issue. The method used for data processing is described in Section 3.

2.4. Surface Monitoring

Surface NO2 concentration data are obtained from the EPA’s AQS data (http://www.epa.
gov/ttn/airs/airsaqs/). It should be noted that most of the AQS surface NO2 measurements
are from chemiluminescence monitors with a molybdenum converter, which often overestimates
NO2 concentration owing to the interference from other reactive nitrogen species (NOz) [37,38].
Bechle et al. [39] also reported that the NOz interference is lower near major sources in southern
California. In this study, we did not correct any potential bias caused by the interference.

3. Methodology

Sampling of the data is an essential issue in spatial regridding, which is commonly performed in
satellite data processing to convert spatial resolution and map projection from a given configuration to
another. Among numerous spatial regridding methods, interpolation and pixel aggregation are two of
the most common. Interpolation is preferred when the target domain resolution is finer than the raw
data pixels, whereas pixel aggregation is preferred for averaging all the pixels inside each domain cell
when the target grid cell size is larger than the raw data pixel size.

Despite the fact that the two methods are widely utilized, the need for a more mathematically
complete method for spatial regridding has been raised, especially when finer resolution is needed and/or
where the conservation of measured quantity is required. Emission data are one example where mass
conservation is critical to avoid spurious loss or gain. The EPA’s spatial allocator used in its Sparse Matrix
Operator Kernel Emissions (SMOKE) [40] processing is one way of handling emission data without
compromising mass conservation. It calculates the fractional areas of overlapping polygons between raw
data pixels (e.g., county shapes) and modeling grid cells. To build a lossless spatial regridding tool, we
used polygon clipping algorithms and developed a tool to perform the accurate spatial regridding of
satellite data. This section introduces the two core algorithms for regridding, “conservative regridding”
and “conservative downscaling”, and describes their applications using satellite data.

3.1. Conservative Regridding

The conservative regridding method reconstructs raw data pixels (e.g., satellite data) into a target
domain grid cell by calculating the fractional coverage of raw data pixels within the target grid cell.
Figure 2 shows an example of the conservative regridding method. The concentration of grid cell Cj can
be calculated as (P1·f1 + P2·f2 + P3·f3 + P4·f4)/(f1 + f2 + f3 + f4). In general, if the raw pixel data are in the
density unit (e.g., concentration), one can calculate the overlapping fractions for each data pixel and grid
cell and thus calculate the grid cell concentration as a weighted average of data pixels and fractions:

fi,j =
Area

(
Pi ∩ Cj

)
Area

(
Cj
) (1)

Cj =
∑ Pi· fi,j

∑ fi,j
(2)

where i and j are the indices of data pixel, P, and grid cell, C, fi,j is the overlapping fractions, and
∑ fi,j = 1 if no missing pixels are involved in grid cell Cj.

http://www.temis.nl/airpollution/no2.html
http://www.epa.gov/ttn/airs/airsaqs/
http://www.epa.gov/ttn/airs/airsaqs/
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Figure 2. Example of the conservative regridding method. OMI NO2 column densities are regridded
onto a 4-km model domain using fractional weighting. (A) Original OMI NO2 column density;
(B) zoomed in feature (blue box in (A)); and (C) regridded OMI NO2 column densities are shown.

This conservative regridding method is a similar approach to the variable-pixel linear
reconstruction algorithm used in the astronomy community, which was developed to preserve
photometry and resolution for the Hubble Space Telescope [41]. We used subroutines from the Cube
Builder for IRS Spectra Maps (CUBISM) [42] based on the Sutherland–Hodgman polygon clipping
algorithm [43] for the efficient calculation of overlapped fractions. More details are available in the
documentation of the development of the IDL-based Geospatial Data Processor (IGDP) [44].
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3.2. Conservative Downscaling

The conservative downscaling method conducts a downscaling on top of the conservative
regridding. We follow the concept of meteorological downscaling, which is a common practice in
regional-scale modeling to build boundary conditions from global model output. This approach needs
to be distinguished from a simple approach to increase resolution. The meteorological downscaling
constrains the boundary condition and allows fine-scale restructuring with its own set of physical and
thermal balances. On the contrary, this approach preserves the original coarse pixel quantity from the
satellite and reconstructs fine-scale structures inside each satellite pixel coverage.

Figure 3 shows an example of the conservative downscaling method using NO2 column data
from GOME-2 and OMI. GOME-2 and OMI NO2 column data have different spatial resolutions and
overpass times, which complicates the direct comparison of these two data sets. Because their spatial
resolutions are vastly different (GOME-2 with 80 × 40 km2 and OMI with 13 × 24 km2), the simple
regridding method cannot be used in the comparison. If the normal regridding method were applied,
the GOME-2 data with coarse resolution would be unable to provide spatial variations between urban
source and rural receptor areas. This would result in a lower concentration in near emission sources
such as downtown urban and dense road networks, and a higher concentration in suburban or rural
areas, compared with the finer resolution OMI or in situ observations.
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GOME-2 NO2 column densities; (B) CMAQ NO2 column densities; (C) spatial weighting kernel; and
(D) downscaled GOME-2 NO2 column densities are shown.

To lessen this systematic bias due to the discrepancies in spatial resolution and possibly provide
a fair platform to compare various datasets with different resolution, we evaluated the use of
high-resolution modeling data. As presented in Figure 3B, a CMAQ simulation was performed in the
study area with 4-km resolution. Figure 3A shows the raw data pixels from the GOME-2 NO2 column
measurement (usually with 80× 40 km2 or coarser) for the southern California region on 18 August 2008.
The predominantly smooth pattern in the Los Angeles region indicates the enhanced NO2 column data.
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However, the 4-km CMAQ-simulated NO2 column data at the corresponding local time (09:30 a.m.)
show much more detailed spatial distributions, similar to the sources of NOx emissions.

For each GOME-2 pixel, we retrieved collocated CMAQ pixels as shown in Figure 3B. With the
usual GOME-2 pixel size and CMAQ grid cell size, around 200 cells are available per GOME-2 data
pixel. A spatial weighting kernel was constructed next, as a fractional distribution of the CMAQ NO2

concentration corresponding to a GOME-2 pixel. Selected CMAQ NO2 concentrations were normalized
(i.e., divided by the average of all selected concentrations, Figure 3C) and were then applied to the
GOME-2 data pixel to reconstruct its spatial distribution as follows:

Cj =
∑ Pi·ki,j· fi,j

∑ fi,j
(3)

where ki,j is the spatial weighting kernel of Pi in the position of Cj. The total kernel ki,j throughout Pi
equals 1, meaning that the average of the reconstructed GOME-2 pixel is identical to the original value.
With all reconstructed GOME-2 pixels, we re-performed conservative regridding in order to build the
whole distribution within the target domain. Figure 3D shows the final output with more detailed
structures. One can notice the fine structures in Los Angeles and other cities, such as San Diego, Santa
Clara, Bakersfield, and Mexicali, as well as I-10 freeway traffic.

The most important point when implementing the conservative downscaling procedure is that
the procedure is conducted within each satellite pixel. By conducting downscaling for each data pixel
with a unique weighting kernel for each, the quantity in the original pixel never propagates out of
the original data pixel’s footprint. Indeed, the weighting kernel only helps the fine structures within
a certain satellite data pixel, while the general spatial patterns in a domain are determined only by
the distribution of the original pixels. Comparisons of downscaled NO2 column densities with in situ
measurements during several field campaigns are available in previous studies [21,45].

3.3. Averaging Kernel

In addition to the spatial adjustment required to match horizontal resolutions in the data, the
differences in vertical properties between satellites and the model are also considered. For space-borne
monitoring, the sensitivity of the instrument to tropospheric composition tends to depend on the
altitude, having a vertical profile of systematic errors [46,47]. The averaging kernels (AKs), which
provide an instrument’s relative sensitivity to the target tracer’s abundance, were applied to each
layer’s model density, before being integrated into the column density [48]. Detailed procedures are
described in Kim et al. [21].

4. Downscaling of Column Densities

Using the spatial and vertical adjustment methods from the previous section, NO2 column densities
from OMI and GOME-2 are compared here with CMAQ simulated column densities. Figure 4 shows
spatial distributions of the annual mean OMI and CMAQ NO2 column densities in 2008 over southern
California. The two left-hand panels show OMI NO2 column densities with (“DS”) and without (“xDS”)
using the downscaling technique, and the two right-hand panels show CMAQ NO2 column densities
with (“AK”) and without (“xAK”) AK information. In general, both satellite and model data represent
the geographical distribution of potential NOx emission sources, including the strong emission flux
signals from Los Angeles and its neighboring cities (Bakersfield, Riverside, and San Diego). However, it
is also noticeable that the original OMI NO2 column density (“xDS”) has smoother spatial distribution
than the CMAQ NO2 vertical column density or downscaled OMI NO2 column density.

The smoothing effect due to OMI pixel size is better shown in scattered plots, and thus Figure 5
shows the comparison between OMI and CMAQ NO2 column densities in scatter plots. Over the
locations with higher NO2 concentration, OMI tends to have lower NO2 column densities compared
with CMAQ, which is consistent with the result suggested from the smoothing effect. Using the
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downscaling method improves both the correlation coefficient (R = 0.96) and linear square fit slope
(Slope = 1.01). Applying the AK did not make much difference.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 17 
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The advantage of the downscaling technique is dramatic in the processing of GOME-2 NO2 data,
which have a larger footprint pixel size (80 × 40 km). Figure 6 shows spatial distributions of GOME-2
NO2 column densities and modeled NO2 column densities in the morning (~09:30 a.m.). Clearly, the
GOME-2 cannot resolve fine-structure NO2 plumes from Los Angeles or other cities. It should be noted
that variant color scales are used for each plot to represent fully the spatial distributions. The maximum
NO2 column density of GOME-2 without downscaling (24 × 1015 #/cm2) is almost twice that of the
same data with downscaling. However, the actual change within the whole domain is negligible
considering the difference is less than 0.2% (e.g., (3.4913 − 3.4856) × 1015#/cm2/3.4913 × 1015 #/cm2

× 100% = 0.16%).
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Figure 6. Spatial distribution of GOME-2 and CMAQ NO2 column densities. “DS” and “xDS” denote
GOME-2 NO2 column densities with and without the downscaling method, respectively, whereas “AK”
and “xAK” denote CMAQ NO2 column densities with and without the averaging kernel, respectively.

Figure 7 shows scatter plot comparisons between GOME-2 NO2 column densities and CMAQ
NO2 column densities. As previously emphasized, comparisons between GOME-2 column densities
without downscaling result in extremely poor agreement when compared with the fine-scale model.
When the conservative downscaling method was used, GOME-2 NO2 column density was found to
have much better agreement with modeled column densities in terms of spatial variation. It should be
noted that using AK vertical adjustment results in worse comparison results. When the AK is used,
the regression slope changes from 0.69 to 0.53, also with worse variations. This discrepancy may come
from the coarse spatial resolution of AK distribution. Figure 8 shows examples of the first layer AK
distributions on 10 January 2008 (A,B) and the annual average throughout 2008 (C,D). As the AKs are
assigned per satellite pixel, they have a sharp gradient at each pixel boundary. This pattern is very
clear in the layers near the surface, implying its likely association with the surface type data of the
priori model. If these AKs are directly applied to the model output, they may lose their fine-scale
structure due to the coarse AKs. In this case, the application of AK should be used with caution.
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5. Reconstruction of Surface Concentration

We further estimated surface concentration using satellite observations and model simulation.
Although surface concentration and column densities of NO2 are highly associated due to their
proximity to surface sources and relatively short lifetime, their correlation is not exactly linear.
Following previous approaches [18,49–51],we converted the satellite-measured column density to
surface concentration by applying the surface-to-column ratios simulated from the model. The satellite
inferred surface NO2 concentrations can be estimated as

NO2Conc,Sat = NO2Column,Sat·
NO2Conc,Mod

NO2Column,Mod
·α (4)

where α is an additional adjustment due to satellite and model uncertainties. In a perfect world where
satellite observations and model simulations produce true numbers, the adjustment factor α might be
just one, and the surface concentration could be perfectly reconstructed using satellite observation
data and the model’s surface to column ratios. However, in the real world, an additional adjustment
may be required to consider uncertainties from satellite and model data, so α can be determined later
to minimize the difference between reconstructed and observed surface NO2 concentrations.

Figure 9 shows comparisons between the EPA’s AQS surface NO2 concentrations and reconstructed
NO2 concentrations based on the model and satellite-model data. While pure model simulations
produce reasonable surface concentrations, the reconstructed NO2 concentrations using downscaled
satellite and model data with AK produce the best agreement in terms of mean bias (−2.59 ppb)
and correlation (R = 0.86) for OMI’s overpass time. On the other hand, GOME-2 reconstructed NO2

concentration shows the best result, with downscaling but without AK, R = 0.87. The limitation of large
AK pixels, discussed in Figure 8, may explain the deteriorated performance of GOME-2 with AK.

Further, we tried to determine α by minimizing the bias between measured and reconstructed NO2

concentrations. For OMI reconstructed NO2 concentration, we applied α = 1.37 (=9.48 ppb/6.89 ppb)
to the case with downscaling and AK. For GOME-2 reconstructed NO2 concentration, we applied
α = 0.88 (=14.19 ppb/16.03 ppb) to the case with downscaling but without AK. In both cases,
correlation coefficients remain the same, and mean biases become 0. Figures 10 and 11 show the spatial
distribution of reconstructed surface NO2 concentrations overlaid with AQS surface observations.
Even with the fixed α adjustment, the reconstructed NO2 concentrations show good agreement with
the observations. Better adjustment parameter α values can be found through further training of
observational data sets.

One of the important findings we can draw from this study is that it is possible to maximize the
capability of GOME-2. Although GOME-2 is the newest instrument, with two currently operational
versions (e.g., GOME-2A and GOME-2B), its use in fine-scale research has been limited due to data
resolution. In terms of spatial variability of reconstructed surface NO2 concentration field, our results
demonstrate that GOME-2 can produce a similar quality outcome to that of OMI thanks to the
conservative downscaling method. This finding is encouraging because the full use of GOME-2 can
add valuable information due to its morning time overpass to monitor NOx emission signals from
urban traffic.

It also should be noted that we tested the reconstruction of the surface NO2 concentration only
with a simple α value adjustment. With enhanced data assimilation skills and more training cases, the
performance of surface concentration reconstruction will be improved. This was beyond the scope of
the current study, and so will be pursued further in future research.
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6. Conclusions

This study demonstrates an application of the conservative downscaling technique to compare
atmospheric chemical composition data sets with different spatial resolutions. Due to the geometric
smoothing effect, coarse resolution satellite data cannot resolve finer structures and tend to
underestimate urban plumes, especially for the chemical compositions that have high spatial
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gradients like NO2. Without proper adjustment, coarse resolution satellite data may be systematically
underestimated in urban areas and overestimated in rural areas, which seriously misleads the
evaluation of current emission inventories for air quality modeling.

The conservative downscaling technique was designed to enhance the spatial resolution of satellite
measurements. Fine-scale spatial structures from the model were applied to each coarse satellite pixel to
reconstruct inner structures. Downscaling was conducted for each pixel level with strict mass conservation,
so it did not alter the original observed quantity at each satellite footprint pixel. With the conservative
downscaling approach, NO2 column densities from OMI and GOME-2 instruments show excellent
agreement with CMAQ-simulated NO2 column densities; R = 0.96 for OMI and R = 0.97 for GOME-2.
We further constructed the surface NO2 concentration field by combining OMI and GOME-2 satellite
column densities and simulated surface-to-column ratios from the model. Compared with the EPA’s AQS
surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both
OMI and GOME-2. It is encouraging that, with the conservative downscaling, GOME-2 can produce high
quality concentration fields similar to OMI, in spite of the former’s larger footprint pixels.

We conclude that the conservative downscaling approach is a useful tool to conduct a comparison
between coarse-scale satellites and fine-scale models or observations in urban areas. The concept
of mass conservation—treating each satellite footprint as a polygon—is essential when dealing
with chemical compositions, especially when interpreted in terms of emission inventory evaluation.
A reconstructed fine-scale surface concentration field that uses enhanced satellite products could also
be used for future epidemiology and urbanization studies.
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